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SUPERRESOLUTION TECHNIQUES AND ISAR IMAGING

1. INTRODUCTION

Radar imaging of rotating objects has been an area of interest for more than a
decade, and several descriptions of the techniques/systems involved are
available in the literature [1-5]. Essentially, such a system consists of a
high-quality, cohergnt, pulse doopler radar feeding its received zsignals into
a suitable range-Doppler processor. If digital processing is desired, the
radar receiver output is down-converted in a synchronous detector to baseband
video I+Q (in-phase and quadrature) signals and sampled with A/D (analogue-to-~
digital) converters. Digital range-Doppler processing may then be carried out
in convenient discrete Fourier transform '(DFT) devices. The resolution
capabilities of these systems are based upon the well-known principles of the
ccnventional windowed Fourier transform both in the Doppler domain and the
range domain. The rotation of the object field relative to the radar
generates a Doppler frequency gradient and permits the extraction of cross-
range resolution that is much finer than that obtainable by the radar's
antenna beamwidth.

This paper describes an investigation wherein high-resolution optimal
estimation techniques are applied to the radar imaging problem area. These
methods, sometimes referred to as "Superresolution" techniques [6], are a
current technology that is of considerable interest because of resolution
capabilities that extend well beyond the conventional windowed Fourier
transform. They have been sucessfully applied in spectral analysis, seismic
arrays, RF spatial arrays, and MTI doppler filters [7-11]. Thus, it is

natural to consider their application to ISAR (Inverse Synthetic Array Radar)
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imaging, in the hope that one could obtain either higher resolution images
from the same data samples, or equal-quality images from significantly fewer

data samples.

2. Doppler Domain Processing Algorithms

In this section, we assume an input frcm the radar receiver consisting of
conventional range data samples occuring at the usual Nyquist sampling rate,

£ which is equal to the IF receiver bandwidth. If the radar utilizes a

s’
pulse compression waveform, then the sampling is performed after the pulse
compression filter. The spacing of the samples in the time domain is the
reciprocal of fs and defines a "rangebin"™ for the purposes of this
discussion. Furthermore, we assume that a selectable "range window" of
adjacent rangebin data samples is available from each prf, and that there
exists within this window a prominent point-target scatterer which serves as a
range reference tracking point, i.e., t{he range window is referenced to some
point on the target and tracks/moves with it. The acquisition énd tracking of
this reference point 1is cruicial to achieving high resolution in two~-
dimensional target imaging, because it is wutilized for automatic/adaptive
- self-calibration of the system [12]. This reference point is sometimes
refered to as a "dominant scatterer" on the target. Reference [12] is
recommended for a tutorial discussion on the need for effective self-
calibration and an adaptive technique that 1is capable of providing the
necessary compensation.

In essence, the inverse synthetic¢ array is "focused" upon the tracked

dominant scatterer. Further information on target tracking systems may be

found in [13].




The Doppler domain is approached from the viewpoint of a classical time
domain traansversal filter[13,14], as illustrated in Fig. 1. Here, we
visualize feeding the above rangebin data samples into a tapped delay line
whérein the inter-tap delay is precisely equal to the reciprocal of the prf.

Thus, the sequence of range window data samples will be synchronized in time

at every tap along the delay line. With this viewpoint in mind, consider
forming a large digital-data storage matrix, D, of dimension M rows by N
columns, wherein the columns contain the adjacent rangebin data samples within
our selected range window. Thus, a typical matrix element, Dmn' contains the

th

m rangebin sample in the nth

prf period. As the data samples associated
" Wwith each prf period com2 in, two matrix processing steps occur:
a) The columns of_g are shifted to the left by cne, with the oldest
column (n=1) being bumped off (discarded).
b) The new incoming data samples from the current prf are entered
into the right-hand column (n=N).
Note that it requires N prf periods to initially fill the matrix D. After all
columns have been filled, via the above two steps, we can form a signal

vector, Em(k), for each rangebin row,
t . T 4
Eq() = [E (), E k), Eps(k),ees, Epu()] (1)

where (x) denotes the kP time sampling of the signal vector, subscript m

th

denotes the m rangebin, the subscripts 1 through N denote the delay line

taps, and superscript t denotes the transpose of the vector E m(k) .




The time domain signal vector represented by equation (1) may be
processed via many different transversal filter algorithms to obtain Doppler
domain spectra. Brief descriptions of a few such algorithms follow.

Discrete Fourier Transform (DFT)

The DFT is a Fourier representation of a finite-length sequence which is
itself a sequence rather than a continuous function [15]. Not only is the DFT
primary in conventional ISAR image processing, but it plays a central role in

the implementaton of a variety of digital signal processing algorithms,

including some of the superresolution techniques. One of its implementations
important to our purposes is the formulation of a frequency domain filter
‘which will permit sampling at a selected Doppler frequency. Briefly, we
multiply the signal vector of (1) with a filter vector weighted for the

desired Doppler frequency,f,

=

Loy, _ - ,
V(k,f) = [Em(‘) W) ] - :{‘1 E_(K) w (f) (2)

h rangebin.

where Vm(k,f) is the kth time sample at frequency f for the mt
W(f) is the filter vector at frequency f,
Wo(f) is the nth tap weight of W(f).

Equation (2) essentially defines a "beamformer" as illustrated in Fig. 2. The

individual weights are readily computed from the phase gradient along the

delay line taps for frequency f,

1
wn(f) /A expljw(N-n)] (3)
where w = 2v<}£;>radians (4)
prf




Uniform amplitude weighting is employed in (3) and it will result in a (sin

X)/x type of filter response. Tapered amplitude weighting is an option, of

course.

Note in equation (4) that Doppler frequency, f, is normalized to the prf such

that our normalized angular frequency, w , will be in radians with a range of
-7 £ w £ 7 under normal Nyquist sampling assumptions [15].

A second DFT implementation utilized in our processing is to form a
multiple set of (sin x)/x Doppler filters that satisfy orthogonal separation
criteria. This becomes equivalent to a digital Fast Fourier Transform, (FFT)
[15] and has an exact correspondence to the Butler matrix spatial beamformer
(16]. The complete transformation matrix, B, consists of N column vectors of

N tap weights. A typical matrix element weight, bnl , i3 of the form,

1
b, = ,~expl_. 21|, [Nt _ ( (5)
nt /N 3 I [1 (—§—>](N n)s

1]

where L = Doppler frequency filter index

n tap weight index

N total number of taps

This transformation is utilized in the "beamspace" LPF algorithm.
A third DFT implementation, utilized for plotting the Doppler spectrum is
to average the sampled power from (2) over K time samples,
K

* -
> Vo (K, £V (K, f) (6)

P“(f) =
' k=1

1
X

where Pm(f) is the Doppler spectrum power at frequency f, and the symbol *

denotes complex conjugate. Substituting into (6) from (2) we obtain,




(£) = W EE)-R_-W(E) 1)
Pm ; = W .Bm._

k=1 —m

N K
1
where R = = * t (8)
m K 2: {E (k) = E (kﬁ.

Em is the familiar sample covariance matrix averaged over K updates [14].
Note that the total number of prf implied by (8) will be equal to the K

updates plus the initial N prf required to fill the delay line.

Howells-Applebaum (H-A) Algorithm

This well—known' adaptive array algorithm 1is popular in practical
applications because it does not require data storage as in the sample
- covariance matrix, nor does it require a matrix inverse computation. it
simply computes the cross-correlations between the array output and each tap
signal, and integrates those updates into the N weights., Fig. 2 can serve as
a schematic diagram if we consider the weights adaptive. A simple digital

recursive version of this algorithm may be written per references [17,18],
1) ¥ * (OY (k)
T wn(k+1) = (T )dn(k) + Sn (f) g Emn (k Yo(k (9)

(k) wn (k) is the array output (10)

N
where Y (5) = 5;% Ern

W, (k+1) is the updated n®M tap adaptive weight,
W.(k) is the current nth tap adaptive weight,
Emn(k) is the tap signal from equation (1),

S:(f) is a deterministic "steering" filter weight,
g is a gain parameter,

T 1is a weight integration parameter.




The H-A algorithm is a steepest-descent, feedback type of adaptive filter that
attempts to drive the output toward white noise by moving filter zeros/nulls
onto spectral 1lines within the incoming signal. It requires only 2N
multiplies per update, and yet is capable of satisfactory adaptive filter
performance for many applications. However, it does have certain performance

limitations that should be evaluated [14].

Sample Matrix Inverse (SMI) Algorithm

The SMI algorithm computes an optimum Weiner filter adaptive weight from

the inverse of the sample covariance matrix [14],

W= wr'sT(r
W, =uwR 'S (f) (11)

where !o is the optimum filter weight vector,
§f(f) is a "steering" filter vector at frequency f,
u is a scalar.
This algorithm is generally superior in performance to the H-A algorithm, but
it also requires data storage in the sample covariance matrix and must compute
the inverse. Approximately N3 multiplies per update are required.
To ease the computer storage requirement in accumulating a total of M sample

covariance matrices, it is expedient to store only the upper triangle of the

Hermitian matrices, i.e.,

A

accumulate 5m= (12)




where 0 denotes a lower triangle matri: of zeros. When the Em have been

: ) 2
completed, we then compute and inject a diagonal "psuedonoise" term, Bm ,

% 1race (%)
S2 - U2 . a o Trace \ —m (13)
m o]

N

where 02 is the average noise power level per tap, and a is the psuedonoise
o]

magnitude factor.

The advantages of adding a small amount of psuedonoise are described in
reference (9].
The next processing step then consists of inverting the M modified sample

covariance matrices,

-1 " 2. =1
i - [a, o) i

where I denotes the identity matrix, and substituting into (11) to obtain the
optimum Weiner filter weights.

Maximum Likelihood Method (MLM) Algorithm)

The MLM algorithm was introduced by Capon [6,7], and is defined as a
filter designed to pass the power in a narrow band about the signal frequency
of interest, and to minimize or reject all other frequency components in an
optimal manner. Thus, our Doppler spectrum power may be estimated by
substituting optimum Weiner filter weights from (11) into (7),

*t

P (f) =W +R -

Ry * ¥, (15)




The MLM algorithm further imposes a unity gain constraint at each Doppler

frequency such that,
= (16)
D(f)!o 1

Applying this constraint to (11) and substituting back into (15) results in,

P (f) = ! (17)
m

stieyer. Thestie)
— —m —

Therefore, upon sweeping the deterministic "steering" vector, S(f), through
the Doppler frequency range of interest, the estimated power spectrum will be

plotted for the mth

rangebin. In addition to estimating the spectral lines,
the MLM algorithm provides other useful performance characteristics:

a) It evaluates the relative power levels of estimated spectral lines
because of the gain constraint in equation (16).

b) It is one of the few adaptive algoritnms that permits "copy" of a
desired narrow spectral band [8), i.e., it will pass the desired
narrow band while rejecting all other frequency components in an
optimal manner. This feature will be used extensively in section 4.

It's computation burden is similar to that of the SMI algorithm, i.e., it
requires data storage in the sample covariance matrix and must compute the

inverse.

"Beamspace" LPF Algorithm

This technique is patterned after a spatial beamspace method described by
Gabriel [19], and is intended to permit focussing upon a small sector of the

overall image. It achieves wide-aperture high-resolution, but yet requires




only a relatively small number of degrees of freedom (DOF) in the
processing. Fig. 3 illustrates the technique applied to a time-domain Doppler
processor, wherein a 6U-tap delay line receives the input data samples. Thus,
dimension N=64 in the D matrix cdescribed above. System DOF are reduced in two
steps: first a multiple sub-band DFT connects into the even~-numbered taps
only ( a 32-point DFT); and second, we select only 15 of the output sub-bands
to cover our Doppler sector of interest. The resultant output Doppler filter
passbands are shown plotted in Fig. 4. Fig. 3 also shows a shaped reference
filter connected into seventeen (17) adjacent taps, numbers 48 through 64.
The tap weighting is chosen to pass only the frequencies within the Doppler
sector of interest, and to reject all others. Fig. 5 illustrates the response
of our example reference filter. Thus, we end up with just sixteen filter
outputs to process, instead of 64, and can proceed with almost any of the

current high-resolution algorithms, including the algorithms described above.

3. Simulated Data Results

Rotating Boom Model: Simulated data samples are generated from several

different point-target models. Fig. 6 illustrates the first of these, based
upon a rotating-boom along which are located fifteen (15) targets. The angle

of the boom with respect to the direction of the radar is defined as #(t),

3(t) = 2 l+(f£t (18)
=Ty "\%o

where fr is the rotation rate of the boom in revolutions per minute (rpm), and
t is the time variable in seconds. The range of the ith target, Xi(t), from a

zero-range reference point may be written,

10




Xi(t) = Dc - dicos(e(t)) (19)

where di is the distance from the center of the boom to the ith target, and DC
is the distance from the zero-range reference point to the center of the
boom. hkange-rate velocity, Vi(t), of the ith target is given by the first

derivative of Xi(t).

dxi(t) fr
Vi(t) Tl -21r<66)disin(9(t)), (20)

and we can then readily compute the Doppler frequency, fi(t). via the RF

wavelength, A ,

2
fi(t) = (X)Vi (t) (21

The factor of 2 in (21) occurs because of the two-way path of radar RF energy
{13]. Table 1 contains the parameter values associated with the 15 point-
targets located along the boom, together with their Doppler frequencies
computed from (21). Five targets were given a signal-to-noise ratio (SNR) of
23 dB, two of 20 dB, one of 10 dB, and the remainder 0 dB. Some targets were
grouped together to deliberately produce closely-spaced Doppler signals that
would require superresolution to separate. Data samples were accumulated
from 200 prf (total) as the boom swung through broadside.

Complex data samples as utilized in (1) may be computed for any given
sample time, t, that is synchronized with the radar prf and our selected range

window,

11




L

m
Em(t) = I Az(t) + nm(t) (22)
£=1
K
= 2
b=t o+ (prf) (23)
where m is the rangebin index
Lp is the number of targets within the mth rangebin

th rangebin

nm(t) is the receiver noise sample for the m
k is the time sampling index

t. is a start-time parameter

o]
The Az(t) are determined from a rangebin test conducted for all pertinent

targets at time t,

A
- < -
lrm X (o) s (2> (24)
where A 1is the rangebin dimension
th

r_is them

m rangebin distance

and X;(t) is defined in (19). Note that the index % will be associated with
our target index i as determined from (24), and that we simply substitute

those particular targets (if any) into (22) as

jWi(t)

Az(t) = Ae (25)

X, (t)
Wi(t) = ~Uq ; (26)

12




where the amplitudes, A correspond to the SNR's given in Table 1. The

i
reader will note that the target phases in (26) depend upon the range in
wavelengths at each prf sampling time t.

Fig. 7 shows the Doppler spectrum estimates for nine of the targets along
the boom, computed from the data taken in the particular rangebin occupied by
the boom in its broadside position, i.e., this is a Doppler spectrum for a
single rangebin cut. Utilizing the processor arrangement illustrated in Fig.
3, our delay line gives us an overall Doppler gradient window-aperture of N=64
taps, which implies a sub-band filter conventional resolution of 360/64 = 5.63
degrees in the z-plane (prf-normalized Doppler radians converted to degrees)

Fig. U4 verifies this sub-band filter resolution. Therefore, note in fig. 7

that we have a target doublet and a target triplet in which the Doppler

frequencies are separated by less than 3 degrees, or about half of
conventional resolution capability. Fig. 7(a) demonstrates that the
conventional Fourier transform is not able to resolve the nine individual
point-targets that occur within the plot region. Yet those targets have been
resolved by both of the spectral estimation algorithms utilized, clearly
demonstrating superregolution for this example. In Fig. 7(c) we note that the
MLM algorithm not only resolves the targets, but also gives the correct
relative power level. Finally, on the right-hand side of the Fig. 7 plots,
there are four Doppler signals of significantly different power levels and
spaced one beamwidth apart. This type of situation defies resolution by
conventional filters of 64 taps because of their beamwidths and/or sidelobes,
and yet the two superresolution algorithms have readily resolved the four
signals. A conventional FFT processor would require an aperture several times

larger than our 64 taps in order to resolve these nine individual point-

13




targets, and, therefore, may actually require more prf data samples to achieve
the same resolution. Note in this example that N=64, K=140 updates per (8),
and there was a total of 200 prf data samples available.

A point of clarification is in order concerning the appropriate measure of
resolution for comparison. It is well known that temporal frequency
resolution varies inversely wi'i the processing time duration [5]. For the
example given in TABLE 1, we have a prf of U418 and 200 samples processed,
resulting in a processing time duration of O0.48 seconds or a temporal
frequency resolution of 2.1 Hz. However, this ultimate resolution assumes
uniform weighting of the data samples plus the utilization of all 200 samples
to get a single output pulse in adjacent filter bins - assumptions that are
often not applicable in practical systems. Doppler filters often have tapered

weighting to reduce sidelobes and, in addition, utilize some form of output

Julse integration. Thus, a reasonable measure for resolution comparison
should be based upon the particular system under consideration.

Targets Entering/Leaving a Rangevin: Before we begin to demonstrate three-

dimensional (3D) imaging of rotating objects,.it is necessary to address the
deleterious effects associated with targets that are either entering or
leaving a rangebin. Whenever the returns from a target fail to fill our
tappead delay line in a given rangebin, then we no longer have a complete
gradient aperture and the target energy will not focus into a narrow Doppler
bana. Instead, the energy tends to spread out in accordance with its partial
aperture, resulting in a smeabed/faulty Doppler spectrum estimate.

One technique for diminishing such faulty spectrum effects is to monitor
the tap power in both halves of the delay line and form two sums that would be

sensitive to a strong target entry-exit,

14




L

2
{ k3
Sy (k) = I 'Emn(k){ ,  left half sum, (27)
n=1
N 2
Smr(K) = qEL lEmn(K)l , right half sum (28)

N N . .
where L = (-2-> and Emn\K) is defined in (1).

These sums must usually be augmented with a bias term to prevent excessive

noise triggering.

L 2

Sy = Sml(k) +<§)°o (29)
. b é 2

32 = Smr(x) +(2)a° (30)

where oi is the average noise power level per tap. We then form a power-

sensitive threshold level, Q, which may be of the form,

2No§
Q=1.8}]1 + . (31)
S1+ 82
51
If the ratio of I3 3 or its reciprocal, exceeds the value of Q, then that
2

particular rangebin signal vector is skipped, i.e., it is not utilized in the
algorithm update processing.

A better technique that'is applicable to targets of low SNR is to apply
an FFT to both halves of the delay line, such that we now divide the rangebin
signal vector energy into L Doppler filter bins as indicated in (2) through
(5). Note that each filter bin has a power gain equal to L, thus enhancing
targets of low SNR. If a target is entering a rangebin, its Doppler energy

will be strong in its right-half Doppler bin, but non-existent in the same

15




Doppler bin on the left-hand side; and vice-versa if a target is leaving a
rangebin, Therefore, the ratio of the power in each Doppler bin must be
compared for the two halves in a manner very similar to (29) through (31), and
particular rangebin signal vectors are skipped if the threshold is exceeded.
The performance of this FFT technique is much superior to the simpler
technique described in (27) through (31), but it also requires considerably
more computation in doing the FFT's and then testing each Doppler filter bin.

Merry-go-round Model: The second simulation model is based upon a "merry-go-

round" of 24 point-targets, as illustrated in Fig. 8. The targets are equally
spaced on a circle of 35 meters radius and the entire assembly is rotated at a
rate of 0.63 rpm. Target reflection coefficients are chosen such that the odd
numbers have a receiver output signal-to-noise ratio, (SNR) of 5 dB, and the
even numbers have an SNR of 25 dB. Thus, they alternate in strength around
the circle. In addition, a stationary target of 25 dB SNR is placed at the
center of the circle to serve as a zero-Doppler reference.

From Fig. 8, we can compute the angle position of the ith target, ei (t),

at time t

. f
o,(t) = 2m (i'fl)* (%)t (32)

where I is the total number of equi-spaced targets and fr is the rotation rate

in rpm. The range of the ith

target, X;(t), from a zero range reference point
may be written,

Xi(t) = Dc - docos(ei(t)) (33)

16




where Dc is the distance from 2zero-range reference point to the center of the
circle, and dC is the radius of the circle. Range-~rate velocity, Vi(t), and
Doppler frequency, f;{t), then follow as in (20) and (21). Complex data
samples may be generated from this model in the same manner as described for
the rotating boom model.

Fig. 9 shows a typical three-dimensional range-Doppler radar image for
this particular rotating object. The upper portion of Fig. 9 illustrates the
*image truth", i.e., it plots the point-target SNR's at their exact range-

Doppler coordinate locations on the "merry-go-round". The lower portion of

Fig. 9 illustrates a 3D image estimate of the rotating object, utilizing the

simple H-A algorithm described in the previous section. Parameter values
include M=90 rangebins, N=32 delay line taps, and K = 140 prf processed.
Comparing the estimate against the "image~truth", we note that the H-A
algorithm has correctly located all 24 point-targets around the circle, On

the negative side, this simple algorithm does not give us the relative power

levels of the target, and, in addition, it has a rather "noisy floor" that
will require thresholding to enhance the image.

Fig. 10 illustrates a second 3D image éstimate of this rotating object,
utilizing the more desirable MLM algorithm described in the previous
section. Recall that the MLM algorithm has a much greater computation burden
than the H-A algorithm but, in return it also estimates the relative power
levels of the targets in addition to their locations, Fig. 10(a) was
processed without any regard for target entry/exit effects, and it contains
several examples of the smeared/faulty Doppler spectrum problems referred to
above. In contrast, Fig. 10(b) was processed utilizing the FKT entrysexit

routine, and it will be noted that all of the problem target spectra were

17




eliminated. Another technique utilized in Fig. 10 to enhance the image was
the use of a 2 dB output threshold level, which tends to diminish the "noisy

floor" effect (compare against Fig. 9(b)).

4, Range Domain Superresolution

The problem of resolving an unknown number of <closely spaced,
overlapping, and noisy echoes of a signal with apriori known shape is common
to several application areas such as radar, sonar, geological acoustic
sounding, ultrasound-based nondestructive testing, and medical imaging
procedures. Several approaches for solving this problem have been described
in the literature. These include detection/deconvolution schemes, inverse
filtering, least squares, and maximum likelihood methods [20-25]. In the
radar area, we are familiar with various pulse compression schemes [13] that
nhave been applied to this problem. Recently, Bruckstein et al [26] have
described a new method for achieving high resolution in such cases, based upon
an eigenstructure technique which exploits the structure of the received
signal covariance matrix. This new method was instrumental in prompting the
current investigation. Also, high resolution techniques have been applied to
the wideband linear FM ranging method [5,27,28].

Consider the familiar rectangular pulse with linear FM chirp shown in
Fig. 11. This type of pulse [13] is utilized as an example of a radar signal
of known shape, S(t), throughout the remainder of our discussion. S(t) may be

expressed mathematically in the form,

. 2
se) = L mt(g) eIt LT cr

N3

) (34)

n
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wnere T is the pulse duration (width), B is the modulation bandwidth, and t is
the time variable. The exponent term gives us the phase modulation during the

pulse, Y¥(t),

n

w(t) - TBE ’

I T
-3t <y (35)

and the first derivative of ¥(t) gives the frequency modulation (chirp)

1 a¥(y) (Bt T T
F(t) = Cre T3 =<f{) , > <t < > (36)

- Characteristics of interest include the time-bandwidth product, BT, the
approximate time resolution given by the reciprocal, % , and the pulse

compressjon ratio, D,

D =(§) = BT (37)

We are also interested in delayed and scaled versions of our known waveform
that wouid correspond to the range locations of scattering objects/point

targets,

T T
uiS(t-Ti) , (Ti- 5) <t <(Ti+ 5) (38)

th

where '1‘i = (—3-) , the round-trip time delay associated with the i point-

target at range iy € is the velocity of 1light, and ai is the scattering

coefficient.
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The assumptions discussed in the beginning paragraph of Section 2 also
apply here, except for one important, fundamental difference. For our range

domain processing, the sampling must be performed prior to the pulse

compression filter. The reason for this requirement is that the pulse

compression filter will be utilizing adaptive weighting, rather than
conventional deterministic matched filter weighting. One of the implications
of this fundamental difference is that we must first define an uncompressed,
digital-data signal vector, U , within our range window,

K

. .
Ug = U (b)) 4 U (en), U e,y Uk(tQ)] (39)

where the subscript k denotes the kth prf period , and subscripts 1 through Q
denote the qth data sample. This uncompressed signal vector may be processed
via various pulse compression algorithms to obtain desired range-domain
response. Brief descriptions of a few such algorithms follow.

Matched Filter DFT

First, let us compute the conventional matched filter pulse compression

response wherein we require matched filter weights, W(t) at time ¢t=T

corresponding to a given range. Briefly, we desire the complex conjugate of

(34), but including a linear phase term to account for the time delay phase

shift,
W(t-T) = /% rect(E%i>exp (=j¥(t-T)) (40)
and ¥(t-T) =(%§)(t-T)2 - T , (41)
subject to (T = g ) <t < (T + g )
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where wOT is the linear phase term to account for the time delay phase
shift. In practice, there is a total linear phase term of wo(t~T), but we
delete the reference RF carrier phase, wot , for the sake of simplicity in the
expressions. Since we are dealing with a precise sampled-data system, (40)
and (41) must be written in terms of integer multiples of the sampling
time, At , which is hereafter assumed to be normalized to unity, i.e.,
At = —% = 1, This implies that our bandwidth, B, is also normalized to
unitcy. Further, we may account for the carrier time delay phasing via the
number of RF wavelengths per At interval,
Note that our signal vector U, in (39) corresponds to this model, and we have

these precise sampling times denoted as t where the range window extends

q'
from 1£q<Q. The waveform of Fig. 11 has a width smaller than Q and, from
(37) we find that the number of samplings ,N, within the waveform is equal to
the pulse compression ratio, i.e., define N = INT(D) where INT( ) means the

integer value of the argument. Applying the waveform time restriction, it

follows that the values of tq within the waveform for delay T must be,

T I )
(T- 5) < tq <(T 2) (42)

I

or 2

T
<(tq T)<2

If T is expressed in terms of sampling units, then we may define an integer
index ¢ , such that

£ = INT(T+.5) (43)
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and this integer serves as an index for individual rangebins within the

overall range window. Also, it permits us to define an index n that applies

only within the waveforn,

define t_1 = %(2n-N-1) + 2 for N odd, (4y)

T

T
such that 5 < (tn T) < 5 . (45)
Therefore (t_ = T) = % (2n=N-1) = (T-1) (46)
where 1 € n &N

From (42) it is evident that the tn may be associated with N values of tq via
a simple index shift,

qQq=n+ 2 (47)

Substituting (46) into (40) and (41) gives wus our matched filter
weights, wn(t -T) ,and we can apply them to the signal vector Hk to obtain a

conventional DFT compressed pulse output,

N
1
v (1) = :é:]Uk[tq) W (5(2n=N=1) - (1-2)) (48)

where index q is given by (47) above. The variable, T, becomes our parameter
for "sweeping" or "stepping" across the range window. Recall that T-(E%).
Equation (48) illustrates mathematically how the waveform operates upon
the signal vector Hk to generate a DFT compressed pulse output for a target
located within a particular rangebin. Note that the variable, (T ~2) ,
functions as a vernier shift for each of the N sampling times within the

waveform.
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MLM Algorithm

The description of this algorithm in Section 2 applies equally to the range
domain, and it is an important algorithm because it allows us the "copy"
privilege., That is, it can pass the signal in a narrow band around the target
range of interest, and minimize or reject all other target signals in an
optimal manner.

To utilize the algorithm, we must form the familiar sample covariance

matrix, R ,in the range domain. Rmay be averaged over K updates in a

manner similar to equation (8) in the Doppler domain,

K*
> U -

k=1

(49)

120 >
oy Bad
L=

X ct

However, an important difference is that we do not require filling all
elements within the matrix dimensions of QxQ, since the compression filter
weights only have a dimension equal to N. Thus, the indices of our matrix

elements, R in the stored upper triangle (12) may be limited to (n-m+1)SN

mn’
where m is the row index, and n is the column index.

Because the dimension N is considerably smaller than Q, it |is
advantageous to extract from é a series of smaller matrices denoted as éi ’

where their dimensions are exactly NxN and the subscript, i, is related to the

row/column subscripts as follows,

(i+1) s m § (i+N) (50)
1=0,1,2,3,...,(Q~N)
(i+1) s n s (i+N)
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This results in a total of (Q-N+1) smaller matrices which are to be inverted
and stored for use in processing.
To compute the MLM optimum adaptive weights for "copy" purposes, we first

substitute (40) into (11) to get the Weiner weights,

—3

. -1 - -1 - =
W, (e-T)=uR, Wt-T) 3 < (t=T)<3 (51)

where index { = ¢ per equation (43).

It snould be noted that we are using the conventional matched filter vector as
our "steering" vector. The scalar u 1is next evaluated as the MLM power
.output per (17), and substituted back into (51) to give us gain-normalized MLM
optimum "copy" weights. The reader should recognize that (51) results in
adaptive pulse compression filter weights which tend to null out any target
returns that are not at the range represented by T .-

A suittle requirement embodied within (51) is the small matrix index, i.
As we "sweep" or "step" our steering vector via the value of T, then the

th

correct i matrix inverse must be utilized. This index value follows from

(43) and (47). Each rangebin requires its associated small matrix, i.e., if
we are sweeping across a range window consisting of 30 rangebins, then we need
30 small matrices. A given small matrix permits optimum weights to be
computed anywhere within the extent of its associated rangebin, i.e., within %
1/2.

The MLM adaptive "copy" weights are utilized in exactly the same manner
as conventional matched filter weights in (48). However, the vernier shift

permitted by (T-%) is now of considerable interest because of our intention to

achieve range resolution finer than a single sampling period (or rangebin).
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SLC Algorithm

This algorithm is derived from its well-known counterpart in the spatial
domain, the "sidelobe canceller" (SLC) [14, 17] which, in turn, is intimately
linked to the familiar linear prediction filter of spectral analysis [6]. The
algorithm is widely used because it is relatively simple to implement in most
applications, and yet exhibits excellent adaptive filter performance
characteristics. The unique feature of this algorithm is its simple
"steering" weight vector, which consists of zeros except for one element. For

example, in (51) our "steerirg" vector becomes,

Wo(t -T) = [1,0,0,...,0.0 ,] (52)

and it is evident that the optimum Weiner weight will then consist of the
first column of the inverse of the small sample covariance matrix. To
identify its special nature, the resulting optimum weight is referred to as
the Weiner SLC adaptive weight, and it is standard practice to compute a value
for u such that the first element of this SLC weight is always normalized to
unity.

A particularly attractive version of the SLC algorithm results when it is
based upon the H-A algorithm discussed in Section 2, because then the
computation burden is minimal. As explained therein, sample covariance
matrices are not required, since updates are integrated directly into the
adaptive weights themselves.

Coherent Target Scatterers

when target objects contain scatterers that have no relative motion when

viewed from the direction of the radar, then we have a special situation
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defined as "coherent scatterers." This phenomenon has an equivalence in the
spatial domain and has been addressed in the literature by a number of authors
£6,11,29]. It can result in severely degraded resolution performance from
superresolution algorithms, and usually requires additional processing
techniques to overcome,

To begin with, the reader is reminded that the sample target data from a
single radar waveform transmission (prf) is inherently coherent, in a manner
analogous to taking a single data "snapshot" across a spacial domain array of
elements. For this singular situation the FFT matched filter (beamformer) is
perfectly operable at full aperture resolution, whereas superresolution
techniques are not. This is one of the reasons why superresolution techniques
must be considered as complementary/junior to the FFT. Superresolution
techniques do not become competitive until after a reasonable number of prf
data samplings are available for processing.

The crucial r- irement is to have enough samplings (observation time) to
permit decorrela .on of multiple point-targets within a rangebin (analogous to
multiple sources within a beamwidth in the spatial domain). In essence, we
seek stationarity of the scatterer phase data, as if they were sources of
random phase signals. There are several ways 1in which the necessary
decorrelation might be achieved, or at least approximated:

a. A slowly rotating object wherein the scatterers have sufficient
doppler differences. This is a classic ISAR situation [1-5].

b. An object in straight-line motion (non-radial) wherein an equivalent
rotation occurs over the observation time [5,12].

¢c. A stepped linear FM carrier shift (small increment per prf) which

produces sufficient phase changes between scatterers spaced closely in
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range. This borrows from the classic linear FM ranging method [5,13].

d. Random frequency hopping of the carrier per prf to produce sufficient

phase changes for small range separations.

e. Combinations of the above.
It is sometimes helpful to view the above decorrelation methods in terms of
the variance of the first derivative of the ratio (%) , where x is the range
separation between two closely-spaced scatterers.

Variance of Eﬁ%%ll 21 (33)

(54)

&%
ja
N

Doppler Difference = (—%—)

Carrier Shift = x 9—%91 Hz (55)
There are a number of situation conditions and suttle limitations involved in
the above methods, which are not addressed in this initial report because of
space considerations. Further research investigations are needed to clarify

some of these. The simulation examples contained in this report are based

primarily upon method (a), the slowly rotating object.

Simulated Data Results

Simulated data samples have been generated from a rotating-boom model
similar to Fig. 6, along which are located three targets. TABLE 2 contains
the parameter values, together with their Doppler frequencies computed from
(21). The parameter values were deliberately chosen to produce close target
spacings that would require superresolution in both the range domain and the

Doppler domain. The pulse compression ratio of our chirp waveform is D=13.
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Uncompressed digital data samples are entered into our signal vector, Ek

,
per (39), and are utilized in accumulating a sample covariance matrix over
K=264 prf updates per (49). Fig. 12a illustrates typical conventional DFT
matched filter responses plotted during this accumulation time, and represents
examples of the Vk(T) output sequences per (U48). The reason for the large
spread in the power plot values s the continuously changing phase
relationships between the three targets due to the different Dopplers. Fig.
12b shows the averaged matched filter response (7) over all K prf updates.
Fig. 12 clearly demonstrates that our three targets are too close together to
be resolved by conventional pulse compression. The somewhat "jerky" behavior
in the range "sidelobes" is due to the waveform entry/exit effects as it
sweeps across.

After é is accumulated, we extract the series of smaller
matrices, éi per (50) and compute their inverses for use in (51). Figure ?3
then illustrates the target estimate plots obtained from the MLM algorithm
(17), and the Weiner SLC algorithm weight per (51) & (52). Note that both of
these superresolution algorithms clearly resolve the three targets and
accurately locate their range positions. In addition, the MLM algorithm

correctly estimates the relative power levels of the targets.

The next step is to take advantage of the "copy" feature referred to in
the description of the MLM algorithm, This feature is so important to our
processing that it is re~iterated here again; i.e.,the MLM optimum "copy"
weights in (51) permit us to pass the signal in a narrow region around the
target range of interest, and minimize or reject all other target signals in
an optimal manner., This feature allows us to obtain adaptive compressed-pulse

output signals at vernier steps in range. For the current simulation example
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described in TABLE 2, each sampling period (or rangebin) is divided into ten
subdivisions, and an output data sample is computed for each subdivision via
(51) and (48). Fig. 14 shows four typical "copy" weight responses in the range
domain for various "steering" range selections. Starting at the upper left,
the range mainlobe is steered to range 12.0 whereby the three targets are all
located in the sidelobe region and readily nulled out. In the upper right
figure, the range mainlobe is steered to range 14.0 whereby the target located
at 14.3 1is encroaching into the mainlobe and results in high adaptive
sidelobes (compare with upper left pattern). However, note that all three
targets are still nulled out. The two lower figures illustrate the mainlobe
steered directly into target locations at ranges 14.3 and 15.0. Note that the
unity gain constraint (16) results in passing the target signal at the steered
range, Wwhile simultaneously nulling out the other two, i.e., & clear
demonstration of the "copy" feature, Fig. 15 illustrates the results obtained
from applying this feature to the rangebin region extending from range 12.0 to
18.0. Compare against Fig. 12. Since we are increasing the number of output
data samples by a factor of ten, it becomes expedient to apply this technique
over a smaller field of view. Thus, our range field is restricted to six

rangebins in this case, from range 12.0 to 18.0, but that generates 60 vernier
data samples per prf. The 60 data samples per prf are then processed in the

Doppler domain in exactly the same manner as described in Section 2.

5. Combined Range/Doppler 3D Superresolution lmaging

Three different processing techniques are utilized to demonstrate

combined Range/Doppler 3D superresolution radar imaging:
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a. Conventional Fourier Transform

b. MLM/LPF Algorithm

c. Digital image from optimum weight roots.
Simulated radar data samples were generated from the rotating-boom model
described in Section 4 above, wherein we have three point-targets of 10dB SNR
located along the boom. TABLE 2 contains the various parameter values which
were deliberately chosen to produce close target spacings of 0.7 units in both
the range and the Doppler domain, i.e., the targets are separated by only 0.7
of a conventional rangebin in the range domain, and 0.7 of a conventional
"Doppler bin" in the Doppler domain. Note the slow boom rotation rate of only
0.1 rpm.

Conventional Fourier Transform

Figure 16(¢c) shows the conventional Fourier transform image processed from the
simulated radar data samples. The Fourier transform serves as a baseline
reference to illustrate what conventional processing would result in.. Uniform
illumination matched-filter weighting was utilized in both domains, resulting
in maximum conventional target resolution but with the associated high
sidelobes. An image threshold level of 15 dB below peak power level was
imposed in order to eliminate the distracting effects of the high sidelobes,
and it will be noted that only the first sidelobes (13 dB down) are visible in
the image. At maximum conventional resolution, we note that the 3D image just
barely manages to resolve the three point-targets because their separation
along the range/doppler diagonal is unity, i.e., the square-root of the sum of
the squares of their 0.7 spacings. Recall from Fig. 12b that resolution in
only the range domain was not pbssible. Furthermore, if we were to utilize a

tapered matched-filter weighting in order to reduce sidelobe levels, then the
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3D image would no longer resolve the targets because of the increase in the
"beamwidths",

MLM/LPF Algorithm

Fig. 16(b) shows the image obtained when the same simulated radar samples
are processed via the MLM/LPF Algorithm. Recall that this algorithm was
described in Section 2 for the Doppler domain (see Fig. 7¢), and in Section 4
for the range domain (see Fig. 13b). The "copy" feature of the MLM algorithm
was utilized for each vernier range subdivision within the small field of view
represented by the rangebin scale in Fig. 16, i.e., 90 vernier data samples
'per prf. The MLM algorithm has such well-behaved filter residue
characteristics (an adaptive equivalent of "sidelobes") that the image
threshold level can be set just slightly above the reciever noise level, about
2 dB for Fig. 16(b), thus eliminating the “noise floor" from the image. Note
that the three targets are clearly resolved in this image, their locations are
correct, and their relative power levels are accurately represented. It is
cbvious that the three point-targets could be located much closer together and
still be resolved. Although the MLM algorithm worked well in this particular
example, it has a few drawbacks that must Le considered:

a. The computaticn/processing burden is high.

b. It has the poorest resolution capability of all
superresoluton techniques.

¢. There is a wide spectral spread in the Doppler energy for

vernier range subdivisions close to a target location. This
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Doppler energy spread is caused by the high sidelobes of the
"oopy" weights when our mainlobe is steered close to target
locations, i.e., the high sidelobes amplify the power level of
noise and signal residue across the Doppler band. It produces a
"ocorrugation effect" in the images, which is evident in Fig. 16.

Digital Image from Optimum Weight Roots

There are several different methods available for addressing the
drawbacks of the MLM algorithm, and the one chosen for our next image display
is described as a "digital" 3D plot technique based upon optimum weight
roots. Fig. 16(a) 1illustrates the 3D image formed when the same simulated
radar data samples are processed via this technique. Note that the image now
exhibits excellent fidelity with the model truth, and there are no distracting
artifacts except for some minor "noise floor" pips.

The processing begins in the range domain by accumulating the sample
covariance matrix and extracting the series of smaller matrices denoted as

éi as described in Section 4. It is only necessary to extract the nine
smaller matrices associated with the rangebins to be displayed. These nine
matrices are inverted, stored, and utilized to compute the nine optimum weight
vectors needed, i.e., we compute one adaptive filter weight vector per
rangebin. Fig. 13a is a "range spectral estimate" obtained from those weight
vectors, with the nine rangebins extending from range 10.5 to 19.5 as plotted
there. The sharp peaks correspond to roots of the adaptive filter weights
which represent the target range locations, so we solve for those range
locations by utilizing a peakfinder routine.

The peakfinder routine readily detects the three target locations within
its field of view extending from raqge 10.5 to 19.5. For our current

simulation example, those three locations were estimated as 14.3, 15.0, and
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15.7. Knowing those 1locations gives us the opportunity for dramatic
reductions in computer processing burden, because we now require the "copy"

feature of the MLM algorithm only at the three estimated target locations,

instead of the 90 vernier range divisions that would otherwise be computed to
cover the entire field of view.

Next, the "copy" vernier data samples for the target 1locations are
processed in the Doppler domain via the "Beamspace" LPF algorithm of Section
2, from which we compute associated adaptive weight vectors for the tapped
delay line. The roots of these weight vectors in the Doppler domain give us
an estimate of the Doppler frequencies, A standard polynomial root finding
routine 1is utilized for this purpose. Knowing the frequencies, the MLM
algorithm is then applied to get the relative power levels and thus estimate
the power of the spectrum. Once again, we have a dramatic reduction in
computer processing burden through having an estimate of the particular
Doppler frequencies.

The final step consists of plotting the estimated power spectral lines at
their estimated target range locations, resulting in the "digital" 3D image of
Fig. 16(a). This method overcomes all three of the drawbacks noted for the
MLM/LPF Algorithm images, and opens up the possibility for practical
tecnnology development.

Triangle Model of Ten Point-Targets

To demonstrate performance against a more complicated rotating object, the
final simulations consist of ten point-targets arranged in the shape of a
triangle as shown in Fig. 17. TABLE 3 contains the various parameter values
which were deliberately chosen to result in close target spacings and to fill

three adjacent rangebins with combinations of three or four targets each.
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Also, note that five of the targets have an SNR of 0 dB. Data samples from
264 prf (total) were processed.

Range estimate plots are given in Fig. 18 for four different algorithms:
Fourier, MLM, Wiener SLC, and MUSIC [30]. It is of interest to note the
progression of resolution. DFT processing gives us the overall "power
envelope" of the ten targets in range; MLM processing separates them into
three crude groups; Wiener SLC refines the estimate further by indicating that
at least four targets are present; and MUSIC has sufficient sensitivity to
indicate that at least five targets are present, plus a number of extraneous
artifacts. The latter algorithm is a sensitive high-resolution technique
based upon the noise eigenvectors of the covariance matrix. References
{26,30] are recommended for those readers who are interested in further
details on the MUSIC algorithm.

Fig. 19 then illustrates the two-dimensional radar images processed via the
same three algorithms as used for Fig. 16. The conventional Fourier transform
plotted in Fig. 19(c) again serves as a baseline reference tc illustrate the
results of conventional processing. Here we can barely discern a crude
triangular shape within which at least six components are evident. The MLM
algorithm plotted in Fig. 19(b) successfully resolves all ten targets,
althougn accompanied by some smearing, location displacements, and the
"corrugation" effect refered to earlier. Recognition of the overall
triangular shape and component scatterers is accomplished. The digital image
plotted in Fig. 19(a) then refines the estimate and enhances the component
scatterers. Note that the digital image does contain a few extraneous
artifacts, but these are not considered to be serious defects because such
artifacts tend to move around {(or scintilate) as successive images are

processed, whereas the true scatterers remain stable.




Triangle Model with Coherence Present

In section 4 we alluded to the deleterious phenomenon defined as "coherent
scatterers” wherein two or more closely-spaced scatterers have the same
Doppler frequency as seen by the radar, Qur final simulation example is
deliberately designed to illustrate such a case. TABLE 4 contains the various
parameter values for the ten targets, and it will be noted that coherence
exists (same Doppler) between targets No. 2 and No. 10, No. 4 and No. 9, and
No. 6 and No. 8. Thus, three pairs of scatterers within the triangle are
coherent.

Fig. 20 illustrates the radar image results, utilizing the same three
.algorithms as before. The conventional Fourier transform plotted in Fig.
20(c) gives us a crude triangular shape in which it is difficult to pick out
any component parts beyond the corners of the triangle. The MLM algorithm
plotted in Fig. 20(b) does a little better in resolving component parts, but
note that it also generates some distracting outboard artifacts from the
processing. The digital image plotted in Fig. 20(a) then refines the estimate
and enhances the component scatterers, but still includes the rather strong
outboard artifacts. Careful study of several coherence cases has revealed the
following deleterious effects:

a) the positions of such scatterers may be shifted in both range and/or
Doppler.

b) such scatterers may blend to appear as a single scatterer at
intermediate positions.

c) the processed power levels may not be correct.

d) strong artifacts may be generated at range/doppler positions where no

scatterer exists.
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Fig. 20 contains all of the above effects, and the net result is distortion
of the processed image. To overcome these effects, it is necessary to employ
a decorrelation method such as the carrier shift techniques discussed in

Section 4.

6. Conclusions

High-resolution optimal estimation techniques have been applied to the
problem area of radar imaging of rotating objects. Typical digital range-
Doppler processor operations are described, utilizing several of the many
spectral analysis estimation techniques available in the literature. Their
application to the range domain represents new R&D work, wherein multiple
‘scatterers within one rangebin have been resolved without increasing the
bandwidth., Quality ISAR images have been obtained from simulatec radar data
generated from point-target models of rotating objects. These simulation
results demonstrate the feasibility for achieving superresolution in the
Doppler domain, the range domain, and both domains jointly. The capability
for focusing upon a small section of the overall image and achieving finer
detail (magnification) 1is particularly wuseful, It is concluded that
superresolution techniques offer a viable complement to conventional DFT-ISAR
image processing, and should permit either higher resolution images from the
same data samples, or equal-quality images from significantly fewer data
samples,

Further research is needed in several areas including algorithm
development, algorithm comparison, meaningful resolution comparison criteria,
pulse-compression waveform design/comparison, adaptive "focussing" wupon
dominant scatterers, techniques for reducing computer burden, the relationship

between image quality and number of data samples, the special problem area of
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coherent target scatterers, rangebin entering/leaving effects, and the

evaluation of these techniques when processing experimental radar data

samples.
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TABLE 1
ROTATING-BOOM MODEL for SIMULATED DATA

£,=0.63 rpm, prf=418 Rangebin=31.25 » ©=90 deg. at t=0

Target SNR Distance Doppler Doppler Doppler

No. in dB d, in Hz. in Z%Zprf in deg.
1 0 © +45.0 -185.6 -44. 4 -159.8
2 0 +30.0 -123.7 -29.6 -106.5
3 0 +19.0 -78.3 -18.7 -67.5
4 23 +10.0 -41.2 -9.9 -35.5
5 23 +9.2 -37.9 -9.1 -32.7
6 23 +1.6 -6.5 -1.6 | -5.6
7 23 +0.8 -3.3 -0.8 -2.8
8 23 0.0 0.0 0.0 0.0
9 0 -5.1 +20.9 +5.0 +18.0
10 20 -6.8 +27.8 +6.7 +24.0
11 10 -8.4 +34.8 +8.3 +30.0
12 20 -10.1 +41.8 +10.0 +36.0
13 0 -19.0 +78.3 +18.7 +67.5
14 0 -30.0 +123.7 +29.6 +106.5
15 0 -45.0 +185.6 +44. 4 +159.8
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TABLE 2
ROTATING-BOOM MODEL for SIMULATED DATA

fr=0.l rpm, prf=200, Rangebin=150 A, ©=45 deg. at t=0

Target SNR Distance Doppler Doppler Doppler

No. in dB di in Hz. in %prf in deg.
1 10 +1.0 -3.78 -1.89 -6.81
2 10 0.0 -1.56 -0.78 -2.81
3 10 -1.0 +0.66 +0.33 +1.19

Note: Doppler offset of -1.5625 Hz., all three targets.
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Fig. 1 — Simplified block diagram configuration to illustrate the matrix of synchronized data samples utilized for Doppler
domain processing
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Fig. 6 — Rotating-boom along which are located point-targets, utilized for generaiing simulated radar data samples
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Fig. 9 — 3D Range-Doppler radar image of the rotating object. Simulation **Merry-Go-Round”* of 24 equi-spaced
point-targets, 35 m radius, and 0.63 rpm.
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Fig. 16 — Radar images of rotating object, three point-targets along rotating boom, Table 2 case
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(a) Digital plot from Optimum
Weight Roots.
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(c) Conventional Fourier Transform,
Rectan gle Window, 16 DB Threshold

Fig. 19 — Radar images of rotating object, ten point-targets in triangle shape, Table 3 case in which decorrelation is

approximated
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Fig. 20 — Radar images of rotating object, ten point-targets in triangle shape, Table 4 case in which three pairs are coherent
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